Механизм исполнительный электрический прямоходный программно-регулируемый ВЭП-121, ВЭП-125, ВЭП-128

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Содержание

Введение	1
1 НАЗНАЧЕНИЕ	
2 ТЕХНИЧЕСКИЕ ХАРКЕРИСТИКИ	1
3 КОМПЛЕКТ ПОСТАВКИ	2
4 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ	2
4.1 Установка изделия ВЭП-121, ВЭП-125	4
4.2 Установка изделия ВЭП-128	5
4.3 Схемы подключения	5
5 УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	5
6 МОНТАЖ И ПОДКЛЮЧЕНИЕ	5
7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	6
8 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	6
9 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	6
10 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	7
11 МАРКИРОВКА И ПЛОМБИРОВАНИЕ	7
12 УТИЛИЗАЦИЯ	7
13 ЗАМЕТКИ ПО ЭКСПЛУАТАЦИИ И ХРАНЕНИЮ	8
ПРИЛОЖЕНИЕ А	8

Настоящее руководство по эксплуатации механизмов исполнительных электрических прямоходных программно-регулируемых (в дальнейшем ЭИМ) предназначено для ознакомления обслуживающего персонала с устройством и работой, их основными техническими характеристиками, а также служит руководством по монтажу, эксплуатации и хранению.

Предприятие-изготовитель постоянно ведет работу по усовершенствованию изделия, поэтому в настоящем руководстве могут быть не отражены незначительные изменения в конструкции, имеющиеся в изделии.

1 НАЗНАЧЕНИЕ

ЭИМ предназначен для перемещения регулирующих органов в системах автоматического регулирования технологическими процессами в соответствии с заданной программой.

ЭИМ, совместно с регулирующим клапаном и датчиком температуры, может использоваться в качестве автономного регулятора температуры или в составе распределенных систем с управлением по интерфейсу RS-485, например, для поддержания заданной температуры горячей воды на выходе теплообменника или температуры воздуха в помещении.

Механизмы изготавливаются в климатическом исполнении УХЛ категории 4 по ГОСТ 15150.

Механизм не предназначен для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытия, изоляции и материалов, а также во взрывоопасных средах.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1

Have to vonover a vonover on vonover	Значение			
Наименование характеристики	ВЭП-121-1500	ВЭП-125-1500	ВЭП-128-1500	
Напряжение питания, В	~187-242			
Частота питающей сети, Гц	50-60			
Потребляемая мощность, ВА, не более	6			
Условия эксплуатации:				
- температура окружающей среды	от +1°С до +40°С			
- относительная влажность воздуха	до 80%			
Степень защиты	IP54			
Усилие отключения, Н	1500 ±10%			
Рабочий ход, мм	20±5%			
Номинальное время полного хода, с	63±10%			
Интерфейс	RS-485			
Протокол	Modbus-RTU			
Дискретность задания температуры, °С	1			
Диапазон задания температур, °С	199		199	
Класс защиты от поражения				
электрическим током	1			
Присоединительный размер, мм	L1=96 L1=66 L1=46		L1=46	

Габаритный размер, мм	280	250	220
Масса, кг, не более	2,7	2,5	2,8
Режим работы	Повторно-кратковременный, ПВ – не более 25%		
Средний срок службы	Не менее 15 лет		
Содержание драгоценных металлов			
в граммах на единицу изделия:			
- ЗОЛОТО	0,005271		
- серебро	0,022687		
- палладий	0,000278		

3 КОМПЛЕКТ ПОСТАВКИ

Таблица 2

Наименование	
Механизм исполнительный электрический прямоходный, шт.	1
Датчик температуры погружной, шт.	1
Руководство по эксплуатации, экз.	1

4 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Конструктивно ЭИМ выполнен в виде двух механически связанных узлов (см. рисунок 1 - 3)-электропривода 1 и винтовой передачи 2.

Электропривод выполнен на базе шагового электродвигателя 3, питание и управление которым осуществляется от микропроцессорной платы управления 5, обеспечивающей его работу с заданной скоростью для поддержания заданной температуры, а также отключение при нагрузке на штоке больше максимальной (1,2-1,3 номинального усилия). Номинальное усилие устанавливается на предприятии – изготовителе.

Задание температуры (см. рисунок 4) производится переключателями (десятки и единицы градусов).

При отсутствии (обрыве) датчика температуры привод устанавливается в положение «закрыт». При замыкании контактов «Датчик» - в положение «открыт» (режим тестирования).

Три светодиодных индикатора предназначены для контроля работы ЭИМ. Штатному состоянию соответствует свечение соответствующего индикатора. При задании по RS-485 режима "ДИСТАНЦИОННЫЙ" индикатор "Датчик" мигает.

Сетевой интерфейс RS-485 позволяет:

- задать скорость обмена по сетевому интерфейсу 19200 бод (заводская уставка) или 9600 бод;
- -изменить сетевой адрес ЭИМ (заводской 239) на другой допустимый адрес (0...238);
- -установить режим работы "ДИСТАНЦИОННЫЙ" с возможностью дистанционного (по RS-485) задания температур.

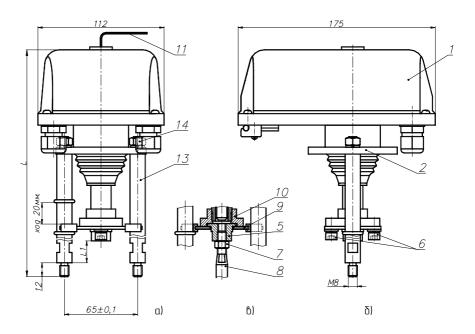


Рисунок 1. ВЭП-121, ВЭП-125

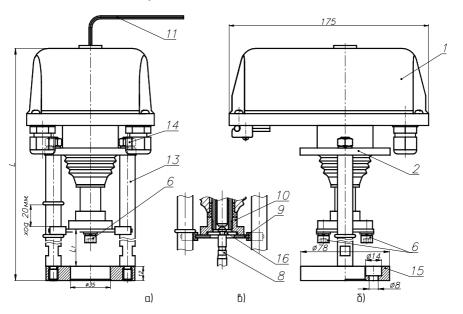


Рисунок 2. ВЭП-128

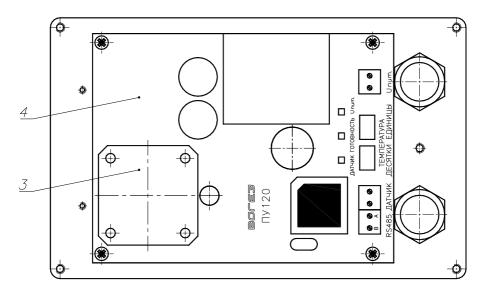


Рисунок 3. Вид при снятой крышке

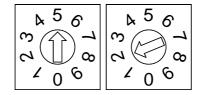


Рисунок 4. Пример задания режима регулирования температуры T=52°C

Для перемещения регулирующего органа ЭИМ вручную предназначен стандартный шестигранный ключ 11 (5мм), который включается в комплект поставки. При этом для перемещения регулирующего органа ЭИМ вручную необходимо вставить ключ в отверстие на хвостовике вала, выведенное на верхнюю крышку электропривода и вращением ключа установить ЭИМ в требуемое положение.

4.1 Установка изделия ВЭП-121, ВЭП-125

Установка ЭИМ на клапан осуществляется в следующей последовательности:

- шток клапана установить в нижнее положение, а электропривод в среднее положение;
 - ослабить гайки 14 на колонках 13;
 - установить ЭИМ, завинтив колонки 13 в крышку клапана;
 - гайки 14 затянуть;
 - открутить винты поз. 6, снять детали 5 и 9;
- накрутить гайку 5 на хвостовик штока 8, обеспечив размер "L1" (см. таблицу 1).

- гайку 5 открутить на один оборот и стопорить гайкой 7;
- вращая ключ 11 приблизить выходной вал электропривода к штоку клапана и присоединить винтами детали 5 и 9 к гайке сборной 10;
 - затянуть винты 6.

4.2 Установка изделия ВЭП-128

Установка ЭИМ на клапан осуществляется в следующей последовательности:

- шток клапана установить в нижнее положение, а электропривод в среднее положение;
 - установить ЭИМ, завинтив фланец 15 винтами M8 DIN912 к клапану;
 - открутить винты поз. 6, снять детали 9 и 16;
 - вставить в паз штока 8 деталь 16;
- вращая ключ 11 приблизить выходной вал электропривода к штоку клапана и присоединить винтами детали 16 и 9 к гайке сборной 10;
 - затянуть винты 6.

4.3 Схемы подключения

Схемы подключения, габаритные размеры датчиков температуры приведены в ПРИЛОЖЕНИИ А (справочном). Информация о распределение адресов регистров Modbus и поддержке протокола Modbus-RTU приведена в протоколе обмена с ЭИМ, размещенном на сайте предприятия: www.vogez.by.

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- **5.1** Работы по монтажу и обслуживанию механизма должны выполняться лицами, имеющими допуск к эксплуатации установок напряжением до 1000 В.
- **5.2** Корпус механизма должен быть заземлен медным проводом, сечением не менее $4~{\rm mm}^2$. Заземляющий провод подсоединить к винту «земля» на корпусе механизма.
- **5.3** Все работы по монтажу, демонтажу и обслуживанию механизма производить только при отключенном напряжении питания (управления).

6 МОНТАЖ И ПОДКЛЮЧЕНИЕ

- **6.1** Цепь питания 220В рекомендуется проводить сетевым проводом сечением не более 1,5 мм² в двойной изоляции, отдельным проводом от силового щита через отдельный автоматический выключатель.
- **6.2** Подключение термодатчиков рекомендуется осуществлять кабелем типа КВВГЭ или МКЭШ сечением не менее $0.5 \,\mathrm{mm}^2$. Длина кабеля не более $100 \,\mathrm{m}$ (сечение жилы кабеля длиной более $50 \,\mathrm{m}$ должно быть не менее $1 \,\mathrm{mm}^2$).
- **6.3** Термодатчик подключается через клеммы, расположенные под крышкой датчика в соответствии с маркировкой.

Термодатчик ТП устанавливается в гильзу (без масла) и фиксируется винтом на гильзе. Гильза завинчивается с паковкой в вваренную в трубопровод бобышку с внутренней резьбой 1/2".

Термодатчик (ТП) горячей воды следует устанавливать на расстоянии не более 100мм от выхода теплообменника.

Для потребителей с большой динамической тепловой нагрузки (бани, предприятия питания и т.п.) следует использовать термодатчик с малой тепловой инерцией (ТП-01), который устанавливается без гильзы и завинчивается с паковкой в вваренную в трубопровод бобышку с внутренней резьбой M20x1,5, непосредственно в поток горячей воды. Тепловая инерция датчика при такой установке в 3-4 раза меньше, чем при установке через гильзу.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

В процессе эксплуатации механизм должен подвергаться профилактическому обслуживанию не реже одного раза в 6 месяцев, при котором производится внешний осмотр, включающий проверку надежности соединений и смазку винтовой передачи смазкой Huskey Dyna-Mite Red.

8 СВИДЕТЕЛЬС	ГВО О ПРИЕМК	Œ	
Механизм ист	полнительный	электрический	прямоходный
		No_	
признан выдержавш	им приемо-сдат	гочные испытан	ия, соответствует
техническим условия	и ТУ ВҮ 1011382	20.005-2005 и год	цен к эксплуатации.
Дата изготовления			- FAT
Подпись	МГ	(ФИС	

9 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный срок - 24 месяца. Гарантийный срок исчисляется со дня ввода изделия в эксплуатацию, но не позднее 6 месяцев со дня продажи при соблюдении потребителем правил транспортировки, хранения, монтажа и эксплуатации.

Дата ввода в эксплуатацию указывается потребителем в разделе 13 и подтверждается актами монтажа и ввода в эксплуатацию (наладки). При отсутствии отметки в разделе 13 и актов монтажа и ввода в эксплуатацию (наладки) гарантийный срок исчисляется со дня продажи. Гарантийный срок хранения - 12 месяцев.

10 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- **10.1** Транспортирование упакованных механизмов следует производить в закрытых транспортных средствах, обеспечивающих их сохранность в соответствии с правилами перевозок грузов. Условия транспортирования в части воздействия климатических факторов внешней среды по группе 4 ГОСТ 15150.
- **10.2**. Хранение механизма производится в законсервированном виде в заводской упаковке в помещении при температуре окружающего воздуха от минус $50 \text{ до} + 40 \,^{\circ}\text{C}$ и относительной влажности воздуха от $30 \,^{\circ}$ до $30 \,^{\circ}$.
- **10.3**. Транспортирование и хранение механизма следует производить с соблюдением требований действующих норм и правил пожарной безопасности.

11 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- **11.1** Пломбирование механизма (платы управления и электродвигателя) производится специальной этикеткой.
- **11.2** Нарушение пломбирования, а также отсутствие данного паспорта являются основанием для снятия механизма с гарантийного обслуживания.

12 УТИЛИЗАЦИЯ

- **12.1** Механизм подлежит утилизации после принятия решения о невозможности или нецелесообразности его капитального ремонта или недопустимости его дальнейшей эксплуатации.
- **12.2** Утилизацию механизма необходимо производить способом, исключающим возможность его восстановления и дальнейшей эксплуатации.
- **12.3** Персонал, проводящий все этапы утилизации механизма, должен иметь необходимую квалификацию, пройти соответствующее обучение и соблюдать все требования безопасности труда.
- **12.4** Узлы и элементы механизма при утилизации должны быть сгруппированы по видам материалов (чугун, углеродистая сталь, нержавеющая сталь, цветные металлы, резина, другие полимеры и т.д.) в зависимости от действующих на его правил утилизации.
- **12.5** Утилизация черных металлов по ГОСТ 2787, цветных металлов и сплавов по ГОСТ 1639, резиновых и пластмассовых комплектующих по ГОСТ 30774.

13 ЗАМЕТКИ ПО ЭКСПЛУАТАЦИИ И ХРАНЕНИЮ

монтаж выполнен	I			
	наименова	ние организации	, осуществив	вшей монтаж, телефо
		ФИО исполн	ителя	
Дата монтажа « _	»	201 _	Γ.	
Наладка выполне		ие организации,	осуществив	шей наладку, телефон
		ФИО исполн	ителя	
Лата напалки «	>>	201	Г	

ПРИЛОЖЕНИЕ А (справочное) 62 630 61/27 61/27 61/27 61/27 61/27 61/27 61/27

Рисунок А.1 Габаритные и установочные размеры термодатчика ТП

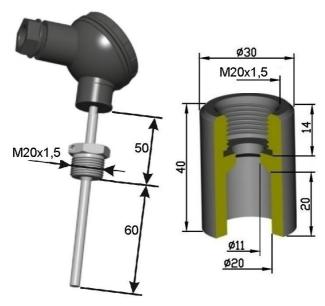


Рисунок А.2 Габаритные и установочные размеры термодатчика ТП-01

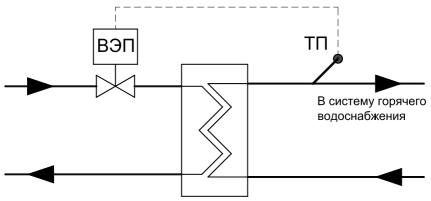


Рисунок А.3

Пример монтажной схемы установки двухходового регулирующего клапана с приводом ВЭП-121, ВЭП-125 для регулирования температуры воды в системе горячего водоснабжения (ГВС).

Рисунок А.4 Пример монтажной схемы установки трехходового регулирующего клапана с приводом ВЭП-128 для приготовления смешанной воды.

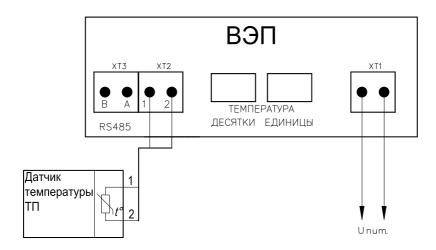


Рисунок А.5 Схема подключения ВЭП-121, ВЭП-125, ВЭП-128